240,882 research outputs found

    Mean Field Theoretical Structure of He and Be Isotopes

    Full text link
    The structures of He and Be even-even isotopes are investigated using an axially symmetric Hartree-Fock approach with a Skyrme-IIIls mean field potential. In these simple HF calculations, He and Be isotopes appear to be prolate in their ground states and Be isotopes have oblate shape isomeric states. It is also shown that there exists a level crossing when the nuclear shape changes from the prolate state to the oblate state. The single neutron levels of Be isotopes exhibit a neutron magic number 6 instead of 8 and show that the level inversion between 1/2- and 1/2+ levels occurs only for a largely deformed isotope. Protons are bound stronger in the isotope with more neutrons while neutron levels are somewhat insensitive to the number of neutrons and thus the nuclear size and also the neutron skin become larger as the neutron number increases. In these simple calculations with Skyrme-IIIls interaction no system with a clear indication of neutron halo was found among He and Be isotopes. Instead of it we have found 8He+2n, 2n+8He+2n, and 16Be+2n like chain structures with clusters of two correlated neutrons. It is also shown that 8He and 14Be in their ground states are below the neutron drip line in which all nucleons are bound with negative energy and that 16Be in its ground state is beyond the neutron drip line with two neutrons in positive energy levels.Comment: CM energy correction, 1 figure and more discussions adde

    Method for reinforcing tubing joints

    Get PDF
    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing

    Charge Disproportionation and Spin Ordering Tendencies in Na(x)CoO2

    Full text link
    The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced'' x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x U_eff <= U/\sqrt(3) ~ W and correlation effects are substantially reduced.Comment: 10 pages, 8 figures, corrected a few typos and changed reference

    c-axis Raman Scattering in MgB2: Observation of a Dirty-Limit Gap in the pi-bands

    Full text link
    Raman scattering spectra from the ac-face of thick MgB2 single crystals were measured in zz, xz and xx polarisations. In zz and xz polarisations a threshold at around 29 cm^{-1} forms in the below Tc continuum but no pair-breaking peak is seen, in contrast to the sharp pair-breaking peak at around 100 cm^{-1} seen in xx polarisation. The zz and xz spectra are consistent with Raman scattering from a dirty superconductor while the sharp peak in the xx spectra argues for a clean system. Analysis of the spectra resolves this contradiction, placing the larger and smaller gap magnitudes in the sigma and pi bands, and indicating that relatively strong impurity scattering is restricted to the pi bands.Comment: Revised manuscript accepted for publication in Physical Review Letter

    Gauge Theory of Gravity Requires Massive Torsion Field

    Get PDF
    One of the greatest unsolved issues of the physics of this century is to find a quantum field theory of gravity. According to a vast amount of literature unification of quantum field theory and gravitation requires a gauge theory of gravity which includes torsion and an associated spin field. Various models including either massive or massless torsion fields have been suggested. We present arguments for a massive torsion field, where the probable rest mass of the corresponding spin three gauge boson is the Planck mass.Comment: 3 pages, Revte
    • …
    corecore